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In  the paper we consider harbour oscillat.ions excited by wind-generated gravity 
waves. The analysis is based on the fact that waves propagate along rays (wave 
orthogonals). In this way the elliptic boundary-value problem is turned into an 
initial-value problem along each ray. When a ray strikes the boundary (the harbour 
walls), reflected rays are produced in accordance with the law of reffexion. When a 
ray strikes an edge point of the boundary (e.g. the tip of a breakwater) diffracted rays 
are produced and emitted in all directions into the harbour. Algorithms for the tracing 
of incident, multiply reflected and singly diffracted rays as well as the computation of 
the field on each ray are presented. Attenuation mechanisms (e.g. partial reflexion), 
which limit the number of rays needed to compute the field, are included. Numerical 
examples for a rectangular and an actual harbour are given. A comparison between 
the results obtained by ray methods and finite difference methods is included. 

1. Introduction 
Analytic and numerical treatment of the diffraction of water waves was originated 

by Sommerfeld (1896) through his solution to the ‘half-plane problem’. Penney & 
Price (1944) used the solution to construct the diffracted field behind a semi-infinite 
breakwater. Blue & Johnson (1 949) used an approximate solution for the breakwater 
gap for the construction of amplitude diagrams. Separate diagrams for different 
ratios of gap width to wavelength are required. The reflexion of waves inside the 
harbour was not included in their model. Carr (1952) showed a graphical way of 
treating also the reflexion of waves inside the harbour using the law of reflexion. The 
method was limited to harbours with only a few straight harbour sides and a narrow 
harbour entrance. For a survey of these graphical methods see Ippen (1966). 

Resonant harbour oscillations were treated analytically by Miles & Munk (1961) 
through their formulation of the ‘harbour paradox’. Ippen & Goda (1963) investi- 
gated theoretically the problem of long wave excited resonance in a rectangular 
harbour. In  the early seventies a number of numerical models for the calculation of 
harbour oscillations were put forward. Hwang & Tuck (1970) and Lee (1971) used 
integral equation methods. Berkhoff ( 1  973) and Mei & Chen (1  975) based their models 
on finite element methods. In contrast to integral equation methods the finite element 
methods yield solutions for variable depth. Recently a nonlinear model for shallow- 
water waves in harbours based on finite difference methods has been developed by 
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the Danish Hydraulic Institute (private communication). Common to all these models 
is the discretization of the harbour area or harbour boundary. Some of the models 
have been used for the computation of harbour oscillations excited by shorter 
waves; but, owing to the discretization of the harbour area, the computational effort 
grows strongly with the wavenumber. 

For wind-generated waves the wavelength is usually short compared with the hori- 
zontal dimensions in the harbour, and asymptotic methods should be used. The ray 
method is an asymptotic method in the relative wavenumber; the approximation 
becomes better and better as the wavelength tends to zero. An account of the modern 
ray method may be found in Keller (1  962). In  Keller (1 958) the theory is applied to 
surface waves on water. Shen, Meyer & Keller (1968) treat waves in channels and 
around islands. For a survey of the general asymptotic method see Shen (1975). 
Christiansen (1975, 1976) uses ray methods for the construction of solutions to  specific 
problems. 

The ray method is based on the fact that waves propagate along rays (wave ortho- 
gonals). This is stated mathematically by assuming an asymptotic representation for 
the wave field explicitly using the fact that the wavelength relative to the horizontal 
dimensions in the problem is small (actually the wavelength needs only to  be smaller 
than the horizontal dimensions). Insertion of the assumption in the governing elliptic 
differential equation yields differential equations for the determination of the rays - 
the eikonal equation - and the determination of the field on the rays - the transport 
equation. In  this way the elliptic boundary-value problem is turned into an initial- 
value problem along each ray. 

When a ray strikes the surface of a scatterer (e.g. a wall in the harbour) a reflected 
ray is produced in accordance with the law of reflexion. The field on the reflected ray 
is determined from the field on the incident ray by multiplication with a reflexion 
coefficient. The reflexion coefficient must be determined from a canonical problem, 
i.e. the simplest problem that contains all pertinent features of the process in question. 
When a ray strikes an edge point in the harbour (e.g. the tip of a breakwater) diffracted 
rays are produced and emitted in all directions into the harbour in accordance with 
the law of edge diffraction (Keller 1962). Again, the field on the diffracted ray is 
described by a diffraction coefficient determined from a canonical problem. Attenua- 
tion mechanisms due to  partial reflexion, bottom friction, and the divergence of 
diffracted rays are included in the theory. 

In the present work we describe an algorithm developed for the determination of 
incident, multiply reflected and singly diffracted rays. Since, in the present paper, the 
water depth is assumed to be constant the rays are straight. The theory is also valid 
for variable water depth, in which case the tracing of refracted rays must be included 
in the above-mentioned algorithm. This extension has been carried out and will be 
described in a future paper. When the field on each ray is determined the various 
attenuation mechanisms mentioned above are taken into account. The attenuation 
due to bottom friction and divergence of diffracted rays is obtained by solution of 
the transport equation. Partial reflexion is described by a linear surface impedance 
boundary condition. This boundary condition forms the basis for the canonical 
problems determining the reflexion and diffraction coefficients. 

According to  the reciprocity principle the propagation direction along the rays can 
be inverted. This fact is used in the procedure for the ray-tracing algorithm. A source 
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is placed a t  the point in the harbour where we want to determine the wave field and this 
source radiates rays in all directions. The algorithm then singles out the rays which - 
directly, after single or multiple reflexions or single diffractions - can be identified 
with an inverted incident ray. The incident field is taken to be a plane sinusoidal 
wave train. Numerical results are shown for a rectangular harbour and an actual 
harbour. 

2. The analysis 

H ( x ,  y, t) we assume time harmonic variation, i.e. 
A definition sketch for the problem is shown in figure 1. For the surface elevation 

H ( x ,  y, t) = Re [rl(”, Y) exp ( - iWl. (1) 

Here x and y are horizontal co-ordinates (figure I), o is the angular frequency 2nlT  
(T is the wave period) and i is the imaginary unit. Assuming irrotational flow in an 
incompressible fluid and a weakly varying bed, a linear equation for the spatial part 
q(x, y) of the surface elevation can be deduced (see Smith & Sprinks 1975) : 

V . (pVq) + k2pq = 0. (2) 

This equation - the mild-slope equation - is correct to the first order in the bottom 
slope. In  ( 2 )  V is the horizontal gradient operator and p is given by 

tanh kh 1 
p = gh-- (3) 

in which k is the local wavenumber 2 n l L  ( L  is the local wavelength) related to o and 
the water depth h through the dispersion relation 

o2 = gktanh kh, (4) 

where g is the acceleration due to gravity. In  two cases ( 2 )  reduces to the Helmholtz 
equation, viz. for deep water (kh+co) or constant water depth. In both cases we have 

(V2 + k2)  7 = 0, ( 5 )  

which is used in the present paper. The attenuation due to bottom friction can be 
described linearly by replacing k by the complex constant k, = k + ia in ( 5 )  (see Larsen 
1977a). Hereaisgivenby 

(6) 
a = -  1 2kh &k,  

n 2kh + sinh 2kh h 

where k,  is a friction parameter of dimension length (Jonsson 1975). 

elevation, i.e. the surface impedance boundary condition with surface impedance 2, 
In  this paper we use the most general linear boundary condition for the surface 

a7 - +ikZr] = 0, an at the boundary, (7 )  

at the vertical plane boundary, with n normal to this plane and pointing into the 
harbour area (figure 1) .  The harbour is connected to the open sea and we need the 
radiation condition 

(8) 
r-+ m 
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I 
FIGURE 1. Definition sketch. 

to  ensure that the only incoming field from infinity is 

7' = Arexp [ik(xco~t9~+ysin8~)],  (9) 

in which A1 and 01 are the given amplitude and the given angle of incidence, respect- 
ively, for the incident field. In  (8) r = (x2+y2)$ and the acattered field qs is defined 
through 

2.1. Propagation 

We represent the spatial part of the surface elevation in the following asymptotic 
representation assuming k large : 

q(x, y) = A exp (ikS). (11) 

Here the amplitude A = A(x, y) and the phase S = S(x,  y) are slowly varying functions 
of the position so that the rapid variation in the surface elevation is described through 
the phase factor exp (ikh'). Insertion of (1  1) in the Helmholtz equation with the 
constant k replaced by the constant k, = k + ia yields 

(kz(l-(VS)2)A+ik(2VS.VA+(2a+V2S)A)+V2A-a2A}exp(ikS) = 0. (12) 

By equating the coefficients k2 and k to zero we obtain the eikonal equation 

(VS)2 = 1, 

and the transport equation 
VS.VA+(a+iV2S)A = 0. 

The eikonal equation may be integrated to give S = s, where s is the distance 
measured along the ray, which is straight (Larsen 1977a), thus yielding the phase 
factor exp (iks). 

The transport equation may now be written 

dA/ds + (a + +V2s) A = 0. (15) 
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FIQURE 2. Wave front and ray. 

The curves S = constant are the wave fronts and the orthogonals are the rays 
(figure 2). Let n and t be unit vectors along the ray and along the wave front respec- 
tively and f the arc length along the wave front ; then 

in which 8 is the angle between the ray and the x axis (figure 2) and K is the curvature 
of the wave front. Since the rays are straight the wave fronts are parallel, i.e. K = 0 
or K = l / s ,  where s now denotes the distance to  a singular point of the ray system, 
e.g. a caustic point, a focal point, a source point, or an edge diffraction point (figure 3). 

Integration of (15) with (16) inserted yields in the two cases 

or 

A = constant x exp ( -as), 

A = constant x exp ( - as)/st. 

If we apply the principle of energy conservation to a divergent pencil of rays we end 
up with the factor s-4, which accordingly is called the divergence factor. The value 
of the constant in (1  7 )  must be determined from the amplitude of the incident field 
AI or from a canonical problem. 

In conclusion to the preceding remarks we note that, when the amplitude and phase 
at one point of a ray are known, the amplitude and phase at any other point of that 
ray can be calculated. This is the constructive aspect of the ray method. 

For the field in the vicinity of singular points (ks < 1) uniform asymptotic methods 
must be applied (see, for example, Chao 1971); but we consider only the far field. 

2.2. Reflexion 

The canonical problem for the reflexion process is reflexion at  a straight boundary. 
Waves incident from a direction forming an angle 8' with the boundary and with 
amplitude AI will excite reflected waves in the direction forming an angle OR with 
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FIGURE 3. Diffraction at an edge point of the harbour boundary. 

the boundary and with the amplitude RAI, where R is the reflexion coefficient. 
Insertion of the total field q = q1 + q" in the surface impedance boundary condition 
(7) yields the law of reflexion 

(18) 

(19) 

e R  = 01, 

and the reflexion coefficient R = (sin8'-Z)/(sinBZ+Z). 

In Larsen & Christiansen (1975) a real constant reflexion coefficient was used. An 
absorbing boundary will have IR( < 1 or Re (2) 2 0. The surface impedance is deter- 
mined by matching the reflexion coefficient given by (19) for normal incidence 
(8' = 90") with experimental and numerical results (see Miche 1951; Goda & Abe 
1968; Madsen 1974; Madsen &White 1976). In  contrast with Mei & Chen (1975) weuse 
(19) with constant surface impedance in order to  retain a linear boundary condition. 
Total reflexion (R = 1) corresponds to  2 = 0. 

2.3. Edge diflraction 
A canonical problem for edge diffraction is a wedge as sketched in figure 3. We use 
the impedance boundary condition 

and 

--as+ik2+rl 1 arl = 0, 0 = 0, 

Here ( r ,8)  are polar co-ordinates (figure 3) and p is the outer opening angle of the 
wedge. The solution to  the Helmholtz equation for plane wave incidence is composed 
of the incident field in the illuminated zone, the reflected field in the zone illuminated 
by the reflected field, and an edge-diffracted field. The solution was found by 
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FIGURE 4. Typical harbour with ray system. 

Malyughinetz (1960) [see also Hurd (1976)for the half-plane case]. We have used an 
approximate solution to the above-stated problem. For the edge-diffracted field 
r,~* we use (see Larsen 1977a) 

r,I - 7  S+ [ - (277k)t @] 
- I exp (iks) exp ( - as) exp (%in) n 

In  (21) we recognize the phase factor exp(ib),  the divergence factor s-3, and the 
attenuation factor due to bottom friction exp (-as). The remaining factor in (21) is 
called the diffraction coefficient and denoted DB(0,OZ; 2*). The expression (21) is 
singular along shadow boundaries 0 = 81 & n and along reflexion boundaries 

8 = n--Or and 8 = 2P-n--Or. 

This singular behaviour can be removed following Kouyoumjian & Pathak (1974) by 
multiplication of each term in (21) by a transition function cancelling the singularities 
in such a way that the diffracted field will possess discontinuities which make the 
total field continuous (see Larsen 1977a). 

3. The computational method 
We assume the harbour boundary to be composed of straight walls. A typical 

harbour geometry with waves incident from infinity is shown in figure 4. Multiply 
reflected rays are excited in accordance with the law of rcffexion. In the figure two 
multiply reflected rays reaching the point I' arc shown. Diffracted rays occur when a 
ray strikes an edge point of the harbour boundary. In figure 4 three diffraction processes 
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of this type are shown. In general the field on the diffracted rays becomes weak and 
as a consequence we have onIy included singly diffracted rays in our calculations. 

In  accordance with the reciprocity principle the propagation direction along the 
ray can be inverted. This fact is exploited in the ray-tracing algorithm, which works 
as follows. A source is placed at  the field point P radiating rays in all directions. The 
algorithm then singles out the rays that, possibly after multiple reflexions or single 
diffractions, can be identified with an inverted incident ray coming through the 
harbour entrance. In  this way the radiation condition is fulfilled. For an account of the 
ray-tracing algorithm see Larsen (1977 b).  

The resultant field at  the point P in the harbour produced by a multiply reflected 
ray becomes 

n 

where T,J(P,) is the incident field at  point Po (figure 4), s is the distance from Po to P 
measured along the multiply reflected ray, and n R, is the product of the reflexion 

coefficients for the reflexion processes involved. No divergence factor is present in 
(22) since all members of each family of rays are parallel. The diffracted field at P 
due to  a single diffraction process at an edge point PE becomes 

n 

(23) 
1 

P ( P )  = 12 TZ(PE) o,j,(ek,e; Z*)Iexp [(ik-a)sDIIIRn- 
m n (sD)+' 

In  this expression the first factor contains a summation over the contributions 
qZ(PE) from each incident geometrical optics ray (characterized by the angle of 
incidence 8A). The diffracted rays leave PE under the angle 0 and the diffraction 
process at PE is described by the diffraction coeEcient, D,,(O&, 8; Z*). The diffracted 
rays undergo a number of reflexions (n R,) before reaching the point P. The distance 

measured along the diffracted ray from PE to P is denoted sD, and the divergence 
factor for this ray becomes (sD)-*. 

n 

The resultant field a t  P is 

T(P) = T V )  + ww + wv), (24) 

where we sum the contributions from all possible rays through P. However, the 
summation is truncated when the contributions become small owing to the various 
losses described previously. If P lies in the shadow region of the incident wave with 
respect to  any edge point the first term in (24) vanishes. 

4. Results and discussion 
4.1. The rectangular harbour 

For long wave excited resonance in a fully open rectangular harbour many analytical 
and experimental results are available, see Miles & Munk (1961), Ippen & Goda 
(1963), Hwang & Tuck (1970), Lee (1971), unluata & Mei (1973) and Mei & Chen 
(1975). For shorter waves, however, the methods used in the references listed above 
fail or become impractical. In  figure 5 we have shown the amplification factor \7\/2Af 
at the back wall of a fully open rectangular harbour versus the relative wavenumber 
kl, where 1 is the length of the harbour, a is the width of the harbour, and all = 0.194. 
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kl  
FIGURE 5. Amplification factor 1~1/2A' versus relative wavenumber kl at the back wall of a 
fully open rectangular harbour: --, ray method; ---, finite element method (Mei & Chen 
1975); --- , geometrical optics field. 

In  the figure we have also plotted the results obtained by Mei & Chen (1975) using 
finite element methods in the range 0 < kl < 5. These results show excellent agreement 
with experimental data. For small values of kl we cannot expect the ray method to 
be valid; but we do find some agreement with respect to the position of the relative 
maxima and minima of the two response curves. Mei & Chen (1975) do not show 
results for kl larger than 5, a fact which might be explained by the difficulties in 
exploiting finite element or finite difference methods for high-frequency waves. 

In order to compare our results with some obtained by a finite difference method 
(Danish Hydraulic Institute, private communication) we have computed the relative 
amplitude in the harbour shown in figure 6. The finite difference method is based 
on nonlinear Boussinesq equations which are only approximately satisfied by sinu- 
soidal solutions. Moreover no special treatment of the corners is used. The waves are 
sinusoidal and normally incident on the northern boundary. The southern boundary 
is fully absorbing (R = 0) and the remaining boundary and the breakwater are fully 
reflecting (R = 1) .  The diffraction effects of the corners at the northern and southern 
boundaries are suppressed in order that the comparison can be carried out. In table 1 
we have listed the relative amplitudes obtained using the two methods. The wave- 
length is L = 93.4m. The agreement between the results is excellent taking into 
consideration the differences between the two methods. 

4.2. Hanstholm Harbour 

In order to show the capability of the ray method we have applied it to a harbour 
of a more complicated shape. A sketch of the planform, which is an approximation of 
the outer basin of Hanstholm Harbour, Denmark, is shown in figure 7. The entrance 
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FIGURE 6. Rectangular harbour with breakwater. 
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Point 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
13 

211. 
6 
6 
6 
6 

45 
46 
46 
45 
95 
96 
95 
96 

145 

Ylm 
120 
170 
190 
240 
120 
170 
190 
240 

60 
120 
180 
240 
180 

Finite 
difference 
method 

0.34 
0.46 
1.8 
1.4 
0-38 
0.36 
2.2 
1.8 
0.55 
0.55 
1.2 
1.0 
1 -0 

MIAr 

Ray 

ITIIA' 
method 

0.33 
0.36 
1.6 
1-8 
0.36 
0.41 
2.3 
1.9 
0.60 
0.50 
1.0 
1-3 
1-1 

TABLE 1. Comparison between the relative amplitudes of the points marked in figure 6 using 
a finite difference method (Danish Hydraulic Institute, private communication) and the ray 
method. 
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FIGURE 7. Outer basin of Hmstholm Harbour. The back walls are strongly dissipative. 

I \ /  
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I 1 0 

10 
ku 

FIGURE 8. Relative amplitude Iql/A1 versus relative wavenumber ka at the point (z,y) = 
(Om, 100m) in Hanstholm Harbour: -, for real surface impedances (see text); ---, for com- 
plex surface impedances (see text). 01 = 102". 

to the inner basins is considered fully absorbing (R = 0, see figure 7).  The back walls 
are made of large concrete blocks and are accordingly strongly dissipative. Hence we 
use a small reflexion coefficient for the back walls, R = 0.33 for normal incidence 
corresponding to Z = 0.5. For the outer breakwaters we use R = 0.85 for normal 
incidence corresponding to Z = 0.08. In  order to investigate a change in the reflexion 
coefficients we have also carried out the calculations for Z = 0.66 + 0.2% for the back 
walls and Z = 0.09 + 0.41i for the outer breakwaters. The water depth is taken to be 
constant and equal to h = 6 m and the friction parameter k, is taken to be k, = 0.20 m. 

In figure 8 we have shown the relative amplitude ITI/AZ at the point (x, y) = 

(0 m, 100m) versus the relative wavenumber ku, where u = 146 m is the width of the 
harbour entrance. The angle of incidence is 8' = 102" (figure 7). We have shown the 
results for the two sets of surface impedances mentioned above. We have repeated 
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ka 

FIGURE 9. Relative amplitude lvl/AI versus relative wavenumber ka at the point (z,y) = 
(Om, 100m) in Hanstholm Harbour: - , for real surface impedances (see text); ---, for 
complex surface impedances (see text). 61 = 90". 

FIGURE 10. Contour map of the relative amplitude in the square area of figure 7 
for real surface impedances (see text) and ka = 11.63.OI = 90'. 
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FIGURE 11. Contour map of the relative amplitude in the square area of figure 7 
for real surface impedances (see text) and ka = 12.30.81 = 90". 
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FIGURE 12. Contour map of the relative amplitude in the square area of figure 7 
for complex surface impedances (see text) and ka = 13.18.6" = 90". 
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- 0.88 -0.50 -0.17 
r ja  

FIQURE 13. Contour map of the relative amplitude in the square area of figure 7 
for complex surface impedances (see text) and ka = 12.515.8~ = 90". 

the calculation for waves normally incident on the harbour entrance (er = 90") as 
shown in figure 9. In  both cases we observe that the change in the reflexion coefficient 
mainly results in a translation of the response curves. Since the field point is in the 
centre of the incident field for 81 = go", we observe the strongest amplification here. 
For waves incident normally on the harbour entrance we have made contour maps 
of the relative amplitude in the square area of figure 7. In  figure 10 and figure 11 we 
have shown the results for the real surface impedances for ka = 11-63 and ka = 12.30 
respectively. We observe a strong dependence of the amplitude on position. 

In  figure 12 and figure 13 we have repeated the calculations for the complex surface 
impedances mentioned above for ka = 13.16 and ka = 12-55 respectively. The change 
in the surface impedances does not affect the picture as much as the change in relative 
wavenumber. In  all cases we observe a weaker field in the shadow zone for the incident 
field than in the illuminated zone (figure 7). 
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